The Igusa local zeta functions of elliptic curves

نویسندگان

  • Diane Meuser
  • Margaret Robinson
چکیده

We determine the explicit form of the Igusa local zeta function associated to an elliptic curve. The denominator is known to be trivial. Here we determine the possible numerators and classify them according to the KodairaNéron classification of the special fibers of elliptic curves as determined by Tate’s algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Simple Igusa Local Zeta Functions

The objective of this announcement is the statement of some recent results on the classiication of generalized Igusa local zeta functions associated to irreducible matrix groups. The deenition of a simple Igusa local zeta function will motivate a complete classiication of certain generalized Igusa local zeta functions associated to simply connected simple Chevalley groups. In addition to the no...

متن کامل

Non-Abelian Zeta Functions for Elliptic Curves

In this paper, new local and global non-abelian zeta functions for elliptic curves are defined using moduli spaces of semi-stable bundles. To understand them, we also introduce and study certain refined Brill-Noether locus in the moduli spaces. Examples of these new zeta functions and a justification of using only semi-stable bundles are given too. We end this paper with an appendix on the so-c...

متن کامل

Local Zeta Functions and Linear Feedback Shift Registers

We give a polynomial time algorithm for computing the Igusa local zeta function Z(s, f) attached to a polynomial f (x) ∈ Z[x], in one variable, with splitting field Q, and a prime number p. We also propose a new class of Linear Feedback Shift Registers based on the computation of Igusa's local zeta function.

متن کامل

Quasi-ordinary Power Series and Their Zeta Functions

The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function ZDL(h, T ) of a quasi-ordinary power series h of arbitrary dimension over an algebraically closed field of characteristic zero from its...

متن کامل

Igusa Local Zeta Functions of a Class of Hybrid Polynomials

In this paper, we study the Igusa’s local zeta functions of a class of hybrid polynomials with coefficients in a non-archimedean local field of positive characteristic. Such class of hybrid polynomial was first introduced by Hauser in 2003 to study the resolution of singularities in positive characteristic. We prove the rationality of these local zeta functions and describe explicitly their pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2002